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This paper describes a method of tracking the electromagnetic

dipole, with a three-dimensional representation of the dipole being

graphically displayed in real-time so as to provide diagnostic

information about a patient’s heart. By knowing the coordinates

and orientation of the heart dipole and comparing this data with a

healthy heart, cardio-specialists may be able to determine where

damaged tissue is located or other diseases in progress.

The method of finding the coordinates and orientation of a

magnetic or electric dipole in space has eluded closed form

solutions unless a large number of sensors is provided. Cirque

patent number 7,145,555 describes methods of finding the location

and coordinates of a magnetic dipole for use in stylus/pen devices.

The equations for finding the location of an electric dipole are

similar to those for finding a magnetic dipole, with the magnetic

dipole moment being swapped for the electric dipole moment. The

electronics for tracking an electric field are much different,

however, requiring capacitive/E-field sensors which require

different compensation for metal in the environment being

measured, whereas magnetic sensors require compensation for

permeable metals (high u metals) and the Earth’s magnetic field.

A simple algorithm for locating the approximate center of the

electric dipole is found by placing nine E-field sensors (sensor 1,

sensor 2 and sensor 3 for discussion, each sensor set having x,y,z

sensors) at a known, fixed distance away from the origin in an

imaginary plane where the patient’s pericardium lies as in Figure

1.



The measurement from each of the three sets of field sensors will

yield the following:

  

Where Emag1 Emag2 and Emag3 are the magnitude of the sensor1,

sensor2 and sensor3 values respectively. Then the approximate

location of the center of the dipole is found by invoking the

equations for the inverse-cubed law which describes how the

intensity of dipoles drop in the far-field as a function of distance:
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Figure 1   Sensor Placement Relative to Myocardium
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Where r is the radial vector from each sensor to the dipole centroid

and r can be rewritten in terms of cartesian-coordinates x,y,z

(referring to the geometry in Figure 1 and noting the value a is the

distance between sensors and the origin):

As Emag1, Emag2, and Emag3 are measured values, the equations

above can be solved for x, y and z because there are three

simultaneous equations in three unknowns. The solution to the

equations above for x, y and z as found from MathCad is:
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The constants k1, k2 and k3 are calibration constants that are

determined by measuring the associated Emag1, Emag2, and Emag3 and

the distances x , y, z relative to the pericardium with a patient who

has ideal heart conditions and will be the benchmark to compare

against. Constants k1, k2 and k3 also include the electric dipole

moment and the surrounding permittivity (epsilon) of the heart

cavity. The coordinates x,y,z found relative to the sensor array

place the location of the centroid of the heart dipole, which when

the direction and angle shifts relative to the ideal heart dipole

location, should provide data useful in diagnosis of heart

conditions. Because of the three-dimensional nature of the

algorithm, the formulations above work as well for sensors that lie

in an plane parallel to the plane of the pericardium such as in

Figure 1.

For a complete solution of the dipole coordinates that works in the

near as well as the far field, we turn to the electric scalar potential

Φ:



Where the divergence of the scalar potential holds:

And the E vectors of the dipole in spherical coordinates relative to

the reference frame of the dipole is found to be:

Assuming the dipole reference frame is parallel to the sensor

reference frame, then the equations for the measured values for

sensor 3 would be:

Similar equations can be written for sensor 2 and sensor 3 which

translate the reference frame of the dipole to the reference frame of
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the sensors (in fact, the equations relative to the dipole reference

frame can be translated using quaternions, a standard translation

technique). The equations that result for each set of x,y,z sensors at

sensor locations 1, 2 and 3 produces nine equations in six

unknowns (x, y, z, p, θ, φ) which results in an overdetermined (and

easier to solve) solution. The angles θ, φ are new information that

give the orientation of the dipole relative to the sensor array. The

original coordinates (x,y,z) are also useful along with the

orientation, to determine the beginning and endpoints of the dipole

in 3-space. The value p is the electric dipole moment which is

determined as a result of the equations, and this eliminates the need

for calibration as mentioned in the previously simpler method of

location. The determination of p for each patient allows complete

independence between ideal and individual conditions, requiring

no calibration of the sensor array in the manufacturing

environment.

The methods described allow for an approximate or complete

solution of the location and orientation of the electric dipole in the

myocardium.


